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SPEED AND ATTENUATION OF SOUND IN GAS — VAPOR - LIQUID
SYSTEMS. ROLE OF HEAT AND MASS EXCHANGE

D. A. Gubaidullin and A. I. Ivandaev UDC 534.2:532.529

Several theoretical and experimental papers have been devoted to the study of the propagation of acoustic
excitations in one and two-component, two-phase media of the gas suspension type [1-13]. The propagation of
small-amplitude acoustic excitations in a mixture of vapor or gas with liquid drops was considered in {1-3].
Excitations of finite amplitude were considered in [4, 5]. The dispersion and absorption of weak sound waves
was studied in {6-12] for a mixture of an inert gas with liquid drops and water vapor. The propagation of finite-
amplifude excitations in fog was analyzed in [13]. The effect of the unsteady interaction of the phases on the
propagation of high-frequency excitations was studied in [2, 3] for single-component mixtures of vapor and
liquid drops. In the present paper we study the dispersion and atienuation of sound in one and two-component
gas—liquid mixtures. '

1. Basic Equations of Motion and Equations of State. We consider monodispersed mixtures and assume
acoustic homogeneity. In order fo study the phenomena, we use the model of a two-velocity and three-tem-
perature continuum [14]. We consider the linearized equations of motion in the plane, one-dimensional case
in the presence of phase transitions. In a coordinate system in which the unperturbed mixture is at rest, the
conservation equations of mass and momentum for the phases are

P ’ P ’ apl P ’ ! 6p' 8 ’
o1 by , v Y1 . 2 Uy
G T P0G = T Rvm g F Pveqy = = lvngr + Py = i

v, ap; v,
P02 + 52 +1f =0, py 5 = nf; @.n

0 0 4 3
P10 = C1gPros Pag = OogP201 Ogp + Cyg = 1, Clyg = g Tagr,
p1= 0y + 0oy P1= Py + Pas

where p and p° are the reduced and true densities; v and p are the velocity and pressure; ¢ is the volume con-
tent; n is the number of particles per unit volume; f is the force on an individual liquid drop due to the carrier
phase; jyy is the diffusive flux of vapor to the surface Z of a drop; jy is the rate of condensation onto the sur-
face of an individual drop. Here and below the subscripts 1 and 2 refer to the gaseous phase and the suspended
phase, V and G refer to the vapor and gas components of the carrier phase, and the primes denote small per-
turbations, while the subscript 0 denotes the initial unperturbed state.

The equations governing the supply of heat to the gaseous phase, to the drops, and to the surface of an in-
dividual drop can be written as

aiy, dig 8p, ’

du,
Pvo 3 F Peo 5 = G0 gy — Mix P g7 = — Pz, (1.2)

Qi + Gz = ~le,
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where i, u, I are the specific enthalpy, internal energy, and heat of vaporization; q;. is the intensity of heat ex-
change between the j-th phaseand the surface of a drop (j =1, 2). We will assume tJhat the thermal and physical
parameters of the gaseous phase (consisting of vapor and gas) can be determined from the corresponding pa-
rameters of the vapor and the gas:

Ry = kyRy + kellg, ¢p1 = kycpy -+ kgtpay

v+ 1.3
Ay = kyhy -+ kghg, 1 = Eyfiy + Rglige -

Here R, ¢p, A, and p are, respectively, the universal gas constant, the heat capacity at constant pressure, the
thermal conductivity, and the dynamical viscosity; ky and kg are the concentrations of vapor and gas in the
carrier phase of the mixture:

ky = pylpy, ke = pelon by + kg = 1. (1.4)

It is assumed that the components of the gaseous phase are ideal gases.* Then the linearized equations of state
of the vapor and the gas mixture as a whole can be written in the form:

Pyy Vo o (1.5)

(T is the temperature). The equation of state of the incompressible dispersed phase is
pF =0, uy =65, uy=0c,T; (1.6)
(c, is the specific heat of the condensed phase).
The Clausius—Clapeyron equation holds along the phase equilibrium curve [14]

s (pv) _ Ts(pv) (1 — 0% /00) @.7)
dpy 10} )

(the subscript S refers to parameters on the saturation curve).

We will consider solutions of the system of linear equanons (1.1) through (1.7) in the form of traveling
waves for the perturbation ':

P ~expi(Kuz — ot) = exp (— K yq4t) exp i (Kz — 01) (1.8
Ky =K + iK 44, Cp = 0/K, Cg = do/dK, ¢ = 2uK 44/K), )
where i is the imaginary unit; K, is the complex wave number; K, , is the linear attenuation factor; Cp and Cg
are the phase and group velocities; ¢ is the attenuation decrement per wavelength.

2. Unsteady Effects Due to Interactions between the Phases. In the presence of a propagating sound wave,
the thermodynamic equilibrium between the phases of the mixture is periodically disrupted in the regions of
compression and expansion. Unsteady exchange of mass, momentum, and energy can occur between the phases.

Analysis of the results of [2] shows that when ay, < 1, pJ > pJ (a dilute suspension at moderate pres-
sure} the most important forces acting on an individual particle of the dispersed phase are the Stokes and Bassi
forces. For an excitation of the type (1.8), the total force f can be written as

nf v—v

LTy = Ty [1 +—= V_ (mrm)l/z]

Py (2.1)
2
2 pzo 2 03 PR02 0 0
Tp == — ———= == == — T 11, = T. Tuis .
? ) 91 9 Pgo ui 151 L ( k] > pi P20 >> Pm)

Here 7, is the characteristic time to establish a quasisteady velocity distribution in the gaseous phase; Tv
_is the Stokes velocity relaxation time for the phases; rJ is its complex analog. The difference between 73 and

+ We emphasize that when Ry = R(; and when there are phase transitions in the mixture, the vapor and gas are
not ideal -gases in view of the dependence of R, on ky, as given in (1.3).
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— L p—
the Stokes relaxation time becomes important for frequencies Tp <o K @ (0 =2V 2, 5C,/a is the character-
istic oscillation frequency of an excitation whose wavelength is comparable to the distance between the in¢lu-
sions, C is the speed of sound).

The Prandtl number of the gaseous phase satisfies Pr ~ 1, hence unsteady heat exchange effects appear
for the same oscillation frequencies as unsteady effects associated with the interaction force between the
phases. The fluxes %z (j =1, 2) depend on the frequency w in the form [15]

’ '
nq12 T ~T2 nys _-TZ—T}:

* * *
L Ty pzo 2 Trg

1 1
T;‘x =73 20 Tt (20, TTz = 15 Taehe (22), 2.2
D »

_ 5 [3z —_ (3 4+ zz) th 7,2]

(thz —zz)
R Sl FUNUT. S L.
2= 3z {0T3)", Ty = % %Ki = P?.,C,- . 1=42,

where TT is the complex temperature relaxation time inthe j-th phase, and is determmed by the characteristic-
time ™A and by the frequency w; w is the thermal diffusivity.

The Schmidt number Sc ~ Pr, and therefore when the unsteady efiects discussed above need to be taken
into account, it is necessary to take into account unsteady mass exchange as well. According to [15], the w~
dependence of the diffusive flux jy 5 of vapor to the interfacial surface can be obtained from the solution of a
spherically symmetric problem for the mass diffusion between an individual drop and the vapor —gas mixture
in the presence of a weak monochromatic wave [6]:

nfvz _1__ Plv“'PVE (2.3)

Here 77 is the complex relaxation time for the partial pressure of the vapor, which is determined by the char-
acteristic time 73 and by w:

1
Ty = —3-— Fl;— (1 - kVO) Ta (Y ( ) (2-4)

Ww=gm W =y (V=g e lewi< ).

fgfzz time Tp is close to its quasi-steady real part 7, =(Ry/3Rp)(1 — kyg) 74 for frequencies satisfying wrqg <

If the phase transition on the boundary between the phases proceeds out of equilibrium, then the vapor
pressure pyy on the boundary will differ from the saturation pressure pys(Tx) lor equivalently, the temper-
ature Ty of the surface of the drop will differ from the saturationtemperature Tg(pyx)l. The rate of nonequi-
librium condensation on the surface can be written with the help of the Hertz —Knudsen— Langmuir formula [14]

U4 ’ et
j Pys— ¥,Cya
nlzo _ 1 Pvs va, TB=';1;‘ l/zn i 1; , (2.5)
0050 Tg P Yv  BCY

where 7 g is the characteristic time to equalize the partial pressures of the vapor on the interphase boundary
and depends on the value of the coeifficient of accomodation ; + is the adiabatic index. From the mass balance
condition on the surface of the drop we have

Jvsy = Js. (2.8)

The system of equations (1.1) through (1.7), and (2.1) through (2.6) is a closed system and can be used to study
the propagation of acoustic excitations in a mixture of an inert gas and liquid drops, plus vapor.

3. Estimates of the Pressure and Temperature Differences. From (2.3), (2.5), and (2.6), we find an equa-
tion relating the partial pressures of the vapor Py, PV3: Pys:

Py — Bys Py — Pys
v ve _ Pvx Vs, (3.1)
T, K
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We use (3.1) to compare the characteristic pressure differences {pV ~PVz | and !pVZ - pvs} which
occur when an acoustic excitation propagates in the vapor—gas suspension. Using (2.4) and (2.5) we have

AV (gu—kvo
<] B R, \a /ToW|

(L ~D,/C is the mean free path of a molecule in the gaseous phase). For atmospheric fog with L ~ 1078,
kyy << 1, and a drop size of a ~ 1078 m, assuming the usually accepted order of magnitude of the coefficient
of accomodation g~ 107, we have Tg/]| TI’;I =1 for all frequencies. Hence over the frequency range 0 <
w << wg the pressure difference lpvz - pVSl is always greater than or equal to the pressure difference

] Py —Pys | . Therefore the departure from equilibrium of the interphase boundary, which is related to the
. difference between pys and pyy, should be significant for all frequencies. We note that if g ~ 1 departure
from equilibrium will appear only at high frequencies, when | ¢(y)| ~ 1072

In order to compare the characteristic temperature differences | T~ Tx|, | T, = Ty|, | Ty = Tg[, we
use another form of the Hertz —Knudsen— Langmuir relation {14]: ~

nigt  _Ts—Ts (1 —o%o/030) Im aCyCl (3.2)

Ty = Iy L
%y 30%p1 T 31 ¥y Plkyg

where 7y is the temperature relaxation time on the interphase surface, and is related to the pressure relaxa-
tion time 3 by

1 — o8 /o0 ct
Ty = ( pVo{"m) g, (3.3)
(Yl - ) Yll kVo

Using (2.2) and (3.2), the equation for the supply of heat to the surface of the drop [compare (1.2)] can be writ-
ten in the form

T1“T2_T>:_T'2 Is—Tg

721 o Tia Tz * 5.4
Ty = (Eﬂ)’t* =i17 (z) = o0ty _» _ pgo"’l“z .
Z1 3 T1 3 T .1 » Ty = pgocz Try = 153, 13 (22)-
The following estimate will normally be valid for the ratio of the absolute values of T§1 and -rg‘:z:
‘T§z| i(’“l)‘"zl
S N e § 1, € Ay). .
IT;.].I 5 }‘2 in1'<< (|ﬂz]<|ﬂ1l 1< 2) (3 5)

The ratio of the characteristic times 75 and | 7%,| in a vapor—gas —~liquid mixture (unlike the case of a
one-component vapor suspension studied in [3]) depends not only on the thermal and physical parameters of the
phases, but also depends on the initial concentrations of the phases:

e85 (_’“_2.) (EL) (C_?)z Ly 4 (3.6)
ITT\:z! Bhyg \ Ay ¢y ! ( a ) imel”
For atmospheric fog, which is a mixture of air with water vapor and droplets of dimension a ~ 1078 m, z*it nor-
mal pressure and temperature, when Ay /A ~20, /C3 ~ 25, L ~ 107% m, and ky, ~ 1072, the ratio w5/| th | ~

10~/B(n,). Therefore when § ~ 1072 we have vz/|75|>1 for any frequency. Thus in a two-component, two-
phase mixture the following inequality, obtained from (3.4), (3.5), and (3.6), holds:

1Ty — T3l < ITE—TSI<|T1—-T2L

Hence we concluded that for atmospheric fog (a mixture of air with vapor and droplets of water) the nonuni-
formity of temperature inside a droplet (the difference between T, and Ty) is usually small compared to the
temperature nonuniformity in the gaseous phase (the difference between T; and Ty) and in contrast to the case
of a one-component vapor suspension, it can be small in comparison to the departure from equilibrium of the
interphase surface (the difference between Ty and TS).
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4. Dispersion Relation. We use the following dimensionless parameters for the composition of the mix-
ture and the physical properties of the phases:

Pyy o _ P o - Cpy 1 5
—, mt = == — Clz————z_—{ 02=..__.._-
Pro PP ’ 09 ’ Ty (1) TRy,

- R, —R
=L, b—oT, h=1—r+<1—kvo>( )

?

From the condition that there exists a nontrivialsolution of the system of linear equations [(1.1) through
(1.7) and (2.1) through (2.6)] of the form (1.8), one can cbtain the dispersion relation between the wavenumber
and the excitation frequency:

(C Kz =V (©) D (o),

V) =1+mile pe)y=1tm ____._"lGIG“L("I”)G (4.1
Fy+mF) 7 .

Here V(w) and D(w) are complex functions describing the dispersion and dissipative effects due to exchange

of momentum between the phases and heat and mass exchange, respectively. When there are no particles

(m =0) we have V(w) =D(w) =1, i.e., dispersion and absorption are absent in a gas without particles. The
functions V{(w) and D(w) depend on frequency and on the thermal and physical parameters of the phases through
the functions Fy, G; ( =1, 3), and Wj (i =1, 4):

Fi=1—¢, Fy=r [ —r(ioty)], Fs=1—(ioty),
Gy = blyy(hW; — TWz)’

. - - -
Gy = [1— (r-+h) Ly} bme, 71(1‘:%1:_7” — he)) W, — mOe,W,,
4.2)

32

- Flhyg
G3 =m [(1 — T'kVo) bW3 — ka0lW2 -+ Y1 m W w ] —_ m"W:,PVA,

W, =1 —(iotry), Wy=1-— (i017),
Wy = me,W, -+ W, W,=io(t,+ 15).

In the limit kVo — 1, the dispersion relation (4.1), (4.2) reduces to that of [2], corresponding to the case of a
single-component mixture of vapor and liquid drops.* The dispersion relation for a mixture of gas and par-
ticles in the absence of phase transitions [3] can be obtained from (4.1) and (4.2) by taking the limit ky, — 0.

1t follows from (4.1), (4.2), and the estimates (3.5) and (3.6) that departure from equilibrium of the phase
transition begins to become important for frequencies such that

Bhyy (A )[R 1 \?
Winml<t, w="(2)(3e) (&) (£) @9

The characteristic oscillation frequencies satisfying the condition (4.3) on | 7, | can be estimated by using the
asymptotic formulas of [15]. Then for low frequencies (T2 << 10), when | 5,| ~ 1, the condition (4.3) takes
the form W < 1. For high frequencies (o7, > 10°) we have the asymptotic form |n.l ~ 10(07,2)""/* and then
(4.3) gives {om)'/? 2> 10W.

Hence, the processes of evaporation and condensation in two-component mixtures (ky, < 1) will depart
from equilibrium for lower frequencies than in the case of one-component mixtures (ky, =1). We note that if
we formally take the limit B o (75, Tz — 0) one can ooe2in from (4.1) and (4.2) a simpler dispersion relation,

which, according to (4.3), is applicable to the propagation of excitaticns with frequencies for which W|n,| > 1,
i.e., mass exchange between the phases is a quasiequilibrium process.

Expressions for the equilibrium Ce and frozen Cg speeds of sound in a vapor—gas —liguid mixture can be
obtained from the dispersion relation (4.1), (4.2) in the limit w — 0 and w — «, respectively:

* Equations (4.1) and (4 2) reduce to the dependence of [2] when 1 8 is replaced with T % and use is made of
(3.3).
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(4.4)

Ye =

Expressions for Cg in a one-component mixture with phase transitions (vapor and liguid) and in a mixture with-
out phase transitions (gas with solid particles) follow from (4.4) by taking the limits ky, — 1 and 0, respec-
tively. In the case m =0 and ky;y =0, when the dispersed phase and the vapor component of the gaseous phase
are both absent, Ce =C,.

5. Results. Dispersion curves, calculated with the help of (4.1) and (4.2) for a mixture of air with water
droplets and water vapor (water droplets of radius ¢ =2 - 10~ m and pressure of the gaseous phase pyy =0.1
MPa) are shown in Figs. 1 through 5. The curves of Figs. 1 through 3 correspond to a vapor concentration in
the carrier phase of kyy =0.8 ~ 1072 [T, = Tg(ky,) = 280 K]. The numbers labelling the curves indicate the val-
ue of the mass content m of drops in the mixture.

Figure 1 shows the effect of the mass content of the drops on the attenuation decrement per wavelength
as a function of the dimensionless frequency wry. The dashed and solid curves correspond to guasi-equilib-
rium (8 = oo, T g = 0) and nonequilibrium (8 = 0.04) mass exchange. It is evident that for a given vaper con-
centration, departure of the phase transition from equilibrium occurs when wry 2 1.* The effect of departure
of the mass exchange from equilibrium depends on m. For m = 0.006 it leads to a marked shift in the extrermum
of the curve o(wry) into the low-frequency region. For m =0.2 the contribution of nonequilibrium effects is
less important. For small mass content of the dispersed phase the maximum value of the coefficient ¢ depends
weakly on m. For example, as m varies from 0.006 to 0.075 (i.e., by about an order of magnitude) there is
practically no change in oy g%.

A characteristic feature of one and two-component gas~liquid mixtures with phase transitions is that the
dependence of the attenuation decrement o on wy can have two maxima (Fig. 1). One of them is due to dissi-
pation because of interphase friction and occurs for wry ~ 1, while the other is observed for wry ~m and is due
to the dissipative effects of nonequilibrium heat and mass exchange between the phases. We consider the in-
dividual contributions of interphase friction and heat and mass exchange to the dispersion and dissipation. The
contributions of friction (dash-dotted curves) and heat and mass exchange (dashed curves) to the total attenua-
tion coefficient ¢, phase velocity Cps and linear coefficient K4, (given by the solid curves) are shown in Figs.
2 and 3. It is evident that when the mass content of drops is small (m =0.006) the dererisnce o(w 7y) is deter-
mined by heat and mass exchange between the phases (when wry ¢ 107! ihe Jashed curves appiotch the solid
curves, see Fig. 2). As m increases, the effect of friction on the Jispersion and dissipstioh@ftthe excitations
increases (Figs. 2 and 3). However, there always e¥igis a region of moderate values of #h #Whose size depends
on ky, and on the thermal and physical priperties of the phases) for which the attenastign®f low-frequency Sig-
nals (wry < 1) is determined 7zinly by heat and mass exchange between the phusds.

*In correspondence with the estimate (4.3), the ofetts of nonequilibrium mass ®€éhaiige must appear for any
frequency. However from Fig. 1 it is seen that they are important only when wp~2'1. This is because at higher
frequencies the relative contribution of mass exchange to the dissipation is smitdll in comparison with-4Be*86n~
tribution of interphase friction.
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Analysis of the interaction between the phases in vapor—gas—liquid mixtures with small particle mass
contents (m << 1) shows that in addition to the characteristic time 7, [Eq. (2.1)] there exists another charac-
teristic time for heat and mass exchange between the phases

- - 2, T
3 1, | Vil FrePT A+ (1= Fyg) bey So+ 5= 2~

5 o3 (5.1)
m == = -
zm ¥y kg (1= Eyy) bey

, Domx 1.

The contribution of heat and mass exchange to the dispersion and dissipation of excitations begins to ap-
pear for wry ~ 10-1, and the contribution of interphase friction for wry ~ 10-!. Usually Pr, Sc ~ 1, then, ac-
cording to (5.1), when 7, =0 we have 7, ~ 7,/m, l.e., 7 > 7y. When wr, ~ 1 the vapor—gas—liquid mix-
ture is in equilibrium with respect to velocity (v; ~ v,) but out of equilibrium both with respect to character-
istic temperature (T; = T, = Ty) and with respect to vapor concentration in the vapor—gas mixture (kyy = ky).
The important effect on the dispersion and dissipation of excitations at these frequencies is heat and mass ex-
change between the phases. As the frequency increases, the relative contribution of heat and mass exchange
diminishes. When wry > 1, the important contribution is interphase friction.

The effect of a departure from equilibrium of the phase transitions on the dependence o(w Tv) is shown in
Fig. 4 for different values of ky,, and m. Curves I and II correspond to ky, =0.1 and 1, Ty =327 and 373°K.
The dashed and solid curves correspond to equilibrium (8 =« ) and nonequilibrium {5 = 0.04) phase transitions.
The dash-dotted curves correspond to the case of frozen mass exchange [for ky, = 0.1 (T = 327°K}]. It is evi-
dent that the nonequilibrium nature of the mass exchange (measured by the difference between Ty and Tg on
the function o{w 7y) decreases as kvo increases. In the case of a one-component medium (kvo =1, curve 1),
the effect of nonequilibrium mass exchange on the function o{w 7y) is weaker. We note that when m ~ 0.01 the
maximum value of the coefficient o is roughly the same for ky, =1 and 0.8 + 10™% 0 gy ~ 0.2 (see Fig. 1).
This is because when m = 0.01 the curve o (ky,) has an extremum ¢ pyax ~ 0.3 corresponding to kyy~ 0.1
(Ty = 327°K).

The typical dependence of K onwry is shown in Fig. 5 for ky, =0.1. The solid curves are for 8 =0.64
and the dash-dotted curves correspond to § =0. It is evident that when w7y ~ 1073-1072, excitations in a medi-
um with m =10-2 are attenuated much more strongly than in a mixture with a significantly higher mass content
of the dispersed phase {(m ~ 0.1-1). A more careful analysis shows that in the presence of phase transitions
the attenuation coefficient for low-frequency excitations (wry < 1) depends on m in a nonmonotonic way. For
example, K, (m) has a maximum for m =102 when w7y ~1073-1072 (m =0, K,, =0;m=1,K,_, ~ 0-0.005).
When wry ~ 1072 the attenuation in a suspension with phase transitions can be several orders of magnitude
larger than that in a gas with solid particles, where phase transitions are absent (Fig. 5).
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PULSATION SPECTRUM OF THE MIXING LAYER OF AN
UNDEREXPANDED JET

S. A. Novopashin, A. L. Perepelkin, UDC 533.6.011
and V. N. Yarygin

The very numerous investigations of the gas dynamics of underexpanded jets that have been made up to
now have made it possible to find the determining parameters and the main laws of outflow [1-3]. The character
of flow in the mixing layer of the initial section of a supersonic underexpanded jet is determined by the Reynolds
number Reg, calculated from the distance to the central compression shock, the maximum outflow velocity, -and
the parameters of the flooded space [1]. A turbulent flow regime is observed for Rey, > 104, Because of the
fact that the velocity drop over the thickness of the mixing layer has the order of magnitude of the speed of
sound, turbulent gas mixing can lead to considerable pulsations of the gas-dynamic parameters, A study of
the fluctuation quantities in such flows is associated with a number of difficulties. At the experimental level
the problem consists in the necessity of using diagnostic methods with high temporal and spatial resolution.

In the present paper we investigate density pulsations in the initial section of a supersonic underexpanded
jet escaping from a sonic nozzle. It proved possible to formulate this work in connection with the creation of
a pulsed local method of density measurement, based on Rayleigh scattering of light [4].

Diagnostic Method and Experimental Setup

The use of the method of Rayleigh scattering to measure the concentrations of molecules in gas streams
has a number of advantages over other methods [5]: the noncontact nature and the high localization of the mea-
surements. But the drawbacks limit its wide application. First, the scattering cross section is rather small,
and the traditional use of continuous lasers as the radiation source requires the use of storage systems to iso-
late the signal against the noise background. Therefore, investigations with a high time resolution are im-
possible. Second, the cross section for scattering on dust particles is proportional to the sixth power of their
size, so that the use of the method in actual flows is hindered (in air under standard conditions, for example,
the total number of dust particles is 104-10% cm™3 [6]).
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